
Enabling the
Digital Enterprise

Microsoft Azure Storage

2© copyright Arrk Limited | 2015

MICROSOFT AZURE STORAGE (BLOB/TABLE/QUEUE)
July 2015

The goal of this white paper is to explore Microsoft Azure Storage, understand how it works and to get hands-on experience
working with it.

The goal of Microsoft Azure Storage is to allow users and applications to:

 ɴ Access data efficiently from anywhere at anytime

 ɴ Store data for any length of time

 ɴ Scale to store any amount of data

 ɴ Be confident that the data will not be lost

 ɴ Pay for only what used/stored

Sagar Bandal, Avdhoota Narayandasani, Snehal Khandkar, Shailaja Patole
Arrk Group

3© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper AZURE BLOB STORAGE

WHAT IS BLOB STORAGE?

Azure Blob storage is a service for storing large amounts of
unstructured data, such as text or binary data, that can be
accessed from anywhere in the world via HTTP or HTTPS.
You can use Blob storage to expose data publicly to the
world, or to store application data privately.

Common uses of Blob storage include:

 ɴ Serving images or documents directly to a browser

 ɴ Storing files for distributed access

 ɴ Streaming video and audio

 ɴ Performing secure backup and disaster recovery

 ɴ Storing data for analysis by an on-premises or Azure-
hosted service

BLOB SERVICE CONCEPTS

The Blob service contains the following components:

Storage Account | All access to Azure Storage is done
through a storage account.

Container | A container provides a grouping of a set of
blobs. All blobs must be in a container. An account can

STORAGE
ACCOUNT

CONTAINER BLOB

SALLY MOV1.AVI

IMG02.JPG

IMG01.JPG

PICTURES

MOVIES

FIGURE 1

4© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper

contain an unlimited number of containers and a container
can store an unlimited number of blobs.

Blob | A file of any type and size. There are two types of
blobs that can be stored in Azure Storage: block and page
blobs. Most files are block blobs. A single block blob can be
up to 200 GB in size. This tutorial uses block blobs. Page
blobs, another blob type, can be up to 1 TB in size, and are
more efficient when ranges of bytes in a file are modified
frequently.

URL format | Blobs are addressable using the following URL
format:

http://<storage account>.blob.core.windows.net/<container>/<blob>

The following example URL could be used to address one of
the blobs in the diagram above:

http://sally.blob.core.windows.net/movies/MOV1.AVI

BLOB FEATURES & FUNCTIONS

 ɴ Store Large Objects (up to 50 GB each)

 ɴ Standard REST PUT/GET Interface

http://<Account>.blob.core.windows.net/<Container>/<BlobName>

| PutBlob - Inserts a new blob or overwrites the
existing blob
| GetBlob - Get whole blob or by starting offset,
length
| DeleteBlob
| Support for Continuation on Upload

 ɴ Associate Metadata with Blob
Metadata is <name, value> pairs
Set/Get with or separate from blob data bits, Up to
8KB per blob

5© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper BLOB REST INTERFACE

All access to Microsoft Azure Blob is done through a
standard HTTP REST PUT/GET/DELETE interface.

The HTTP/REST commands supported to implement the
blob operations include:

 ɴ PUT Blob | Insert a new blob or overwrite an existing
blob of the given name

 ɴ GET Blob | Get an entire blob, or get a range of bytes
within the blob using the standard HTTP range GET
operation

 ɴ DELETE Blob | Delete an existing blob
 ɴ CopyBlob | Copy a blob from a source blob to a

destination blob within the same storage account.
This copies the whole committed blob, including the
blob metadata, properties, and committed blocklist.
You can use CopyBlob along with DeleteBlob to
rename a blob, to move a blob between containers,
and to create backup copies of your existing blobs

 ɴ Get Block List | Retrieve the list of blocks that have
been uploaded as part of a blob. There are two block
lists maintained for a blob, and this function allows
retrieval of either of the two or both:

Committed Block List | This is the list of blocks
that have been successfully committed as part of a
PutBlockList for a given blob

Uncommitted Block List | This is the list of blocks
that have been uploaded for a blob since the last
PutBlockList for the blob. These blocks represent the
temporary/uncommitted blocks that have not yet
been committed

All of these operations can be done on a blob with the
following URL:

http://<account>.blob.core.windows.net/<container>/<blobname>

You can upload a blob up to 64MB in size using a single PUT
blob request up into the cloud. To go up to the 50GB blob
size limit, one must use the block interface.

6© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper A BLOB AS A LIST OF BLOCKS

One of the target scenarios for Microsoft Azure Blob is
to enable efficient upload of blobs that are many GBs in
size. This is provided by Microsoft Azure Blob through the
following steps:

 ɴ Break the Blob (e.g. Movie.avi) to be uploaded into
contiguous blocks. For example, a 10GB movie can be
broken up into 2500 blocks, each of size 4MB, where
the first block represents bytes 1 through 4194304,
the second block would be bytes 4194305 through
8388608, etc

 ɴ Give each block a unique ID. This unique ID is scoped
by the blob name being uploaded. For example, the
first block could be called “Block 0001”, the second
block “Block 0002”, etc

 ɴ PUT each block into the cloud. This is done by doing
a PUT specifying the URL above with the query
specifying that this is a PUT block along with the block
ID. In continuing our example, to put the first block,
the blob name would be “Movie.avi”, and the block ID
is “Block 0001”

 ɴ After all of the blocks are stored in Microsoft Azure
Storage, then we commit the list of uncommitted
blocks uploaded to represent the blob name they
were associated with. This is done with a PUT
specifying the URL above with the query specifying
that this is a blocklist command. Then the HTTP
header contains the list of blocks to be committed
for this blob. When this operation succeeds, the list
of blocks, in the order in which they were listed, now
represents the readable version of the blob. The
blob can then be read using the GET blob commands
described above

The following figure incorporates blocks into the Microsoft
Azure Blob data concepts.

As described earlier, blobs can be accessed via PUT and
GET by using the following URL:

http://<account>.blob.core.windows.net/<container>/<blobname>

7© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper

STORAGE
ACCOUNT

CONTAINER BLOB

SALLY MOV1.AVI

IMG02.JPG

IMG01.JPG

PICTURES

MOVIES

BLOCK

BLOCK3

BLOCK2

BLOCK1

In the examples shown in Figure 2, a single PUT can be used
to put the images with the following URLs:

http://sally.blob.core.windows.net/pictures/IMG001.JPG

http://sally.blob.core.windows.net/pictures/IMG002.JPG

The same URLs can be used to get the blobs. In using a
single PUT, blobs up to 64MB can be stored. To store blobs
larger than 64MB and up to 50GB, one needs to first PUT
all of the blocks, and then PUT the block list to comprise the
readable version of the blob. In Figure 2 above, only after
the blocks have been PUT and committed as part of the
block list can the blob be read using the following URL:

http://sally.blob.core.windows.net/pictures/MOV1.AVI

GET operations always operate on the blob level, and do
not involve specifying blocks.

AZURE TABLE STORAGE

WHAT IS THE TABLE SERVICE?

The Azure Table storage service stores large amounts of
structured data. The service is a NoSQL data store which
accepts authenticated calls from inside and outside the
Azure cloud. Azure tables are ideal for storing structured,
non-relational data. Common uses of the Table service
include:

 ɴ Storing TBs of structured data capable of serving web
scale applications

FIGURE 2

8© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper

 ɴ Storing datasets that don’t require complex joins,
foreign keys, or stored procedures and can be
denormalized for fast access

 ɴ Quickly querying data using a clustered index
 ɴ Accessing data using the OData protocol and LINQ

queries with WCF Data Service .NET Libraries

You can use the Table service to store and query huge sets
of structured, non-relational data, and your tables will scale
as demand increases.

TABLE SERVICE CONCEPTS

The Table service contains the following components:

 ɴ URL format | Code addresses tables in an account
using this address format:

http://<storage account>.table.core.windows.net/<table>

You can address Azure tables directly using this
address with the OData protocol.

 ɴ Storage Account | All access to Azure Storage is
done through a storage account. See Azure Storage
Scalability and Performance Targets for details about
storage account capacity.

 ɴ Table | A table is a collection of entities. Tables don’t
enforce a schema on entities, which means a single
table can contain entities that have different sets
of properties. The number of tables that a storage
account can contain is limited only by the storage

STORAGE
ACCOUNT

TABLE ENTITY

SALLY
PHOTO

ID =
DATE =

NAME =
EMAIL =

NAME =
EMAIL =

CUSTOMERS

WINE
PHOTOS

FIGURE 3

https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/
https://azure.microsoft.com/en-us/documentation/articles/storage-scalability-targets/

9© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper

account capacity limit

 ɴ Entity | An entity is a set of properties, similar to a
database row. An entity can be up to 1MB in size

 ɴ Properties | A property is a name-value pair. Each
entity can include up to 252 properties to store data.
Each entity also has 3 system properties that specify
a partition key, a row key, and a timestamp. Entities
with the same partition key can be queried more
quickly, and inserted/updated in atomic operations.
An entity’s row key is its unique identifier within a
partition

PARTITION KEY AND PARTITIONS

 ɴ Every Table has a Partition Key | It is the first property
(column) of your Table. Used to group entities in the
Table into partitions

 ɴ A Table Partition | All entities in a Table with the same
partition key value

 ɴ Partition Key is exposed in the programming model
| Allows application to control the granularity of the
partitions and enable scalability

PURPOSE OF THE PARTITION

 ɴ Performance and Entity Locality | Entities in the same
partition will be stored together. Efficient querying
and cache locality

 ɴ Table Scalability | We monitor the usage patterns of
partitions. Automatically load balance partitions. Each
partition can be served by a different storage node.
Scale to meet the traffic needs of your table

ROWKEY IN TABLE STORAGE

A RowKey in Table Storage is a very simple thing: it’s your
‘primary key’ within a partition. PartitionKey + RowKey form
the composite unique identifier for an entity. Within one

10© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper

PartitionKey, you can only have unique RowKey. If you use
multiple partitions, the same RowKey can be reused in
every partition. Therefore, a RowKey is just the identifier of
an entity within a partition.

TABLE OPERATIONS

 ɴ Create a table
 ɴ Add an entity to a table
 ɴ Insert a batch of entities
 ɴ Retrieve all entities in a partition
 ɴ Retrieve a range of entities in a partition
 ɴ Retrieve a single entity
 ɴ Replace an entity
 ɴ Insert or replace an entity
 ɴ Query a subset of entity properties
 ɴ Delete an entity
 ɴ Delete a table
 ɴ Retrieve entities in pages asynchronously

TRANSACTIONS

One of the most common questions that come up
when talking about Table Storage is regarding whether
transactions are supported. Table storage does support
batch transactions against data within the same table and
the same partition.

There are several rules about the transactions though: all
of the entities must exist within the same partition of the
table, the number of entities in the transaction can’t exceed
100 and the entire batch being sent to the server cannot
exceed 4 MB in size.

As you can see, there are limitations to the level of
transaction support you get which revolves around the
partition. This is another good reason why choosing your
partition key scheme is very important.

11© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper TABLE STORAGE v SQL

DATABASE

Similar to Azure SQL Database, Azure Table Storage stores
structured data, with the main difference being that Azure
SQL Database is a relational database management system
based on the SQL Server engine and built on standard
relational principles and practices. As such, it provides
relational data management capabilities through Transact-
SQL queries, ACID transactions and stored procedures that
are executed on the server side.

Azure Table Storage is a flexible key/value store that
enables you to build cloud applications easily, without
having to lock down the application data model to a
particular set of schemas. It is not a relational data store
and does not provide the same relational data management
functions as Azure SQL Database (such as joins and stored
procedures).

Azure Table Storage provides limited support for server-
side queries, but does offer transaction capabilities.
Additionally, different rows within the same table can have
different structures in Azure Table Storage. This schema-
less property of Azure Tables also enables you to store and
retrieve simple relational data efficiently.

If your application stores and retrieves large data sets
that do not require rich relational capabilities, Azure
Table Storage might be a better choice. If your application
requires data processing over schematised data sets and
is relational in nature, Azure SQL Database might better
suit your needs. There are several other factors you should

CAMPARISON CRITERIA AZURE TABLE STORAGE AZURE SQL DATABASE
Data Relationships No Yes
Server-side Processing No Yes
Transaction Support Limited Yes
Geo-replication Yes No
Table Schema Relaxed Managed
Similarity [to existing data stores used
on-premises]

No Yes

Scale-out Automatic Manual
Data Types Simple Simple, Complex and User Defined

TABLE 1

12© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper

consider before deciding between Azure SQL Database
and Azure Table Storage. Some of these considerations are
listed in the Table 1 on page 12.

AZURE QUEUE STORAGE

WHAT IS QUEUE STORAGE?

Azure Queue storage is a service for storing large numbers
of messages that can be accessed from anywhere in the
world via authenticated calls using HTTP or HTTPS. A single
queue message can be up to 64 KB in size and a queue can
contain millions of messages, up to the total capacity limit of
a storage account. A storage account can contain up to 500
TB of blob, queue and table data.

See Azure Storage Scalability and Performance Targets for
details about storage account capacity.

Common uses of queue storage include:

 ɴ Creating a backlog of work to process asynchronously

 ɴ Passing messages from an Azure Web role to an
Azure Worker role

QUEUE SERVICE CONCEPTS

The Queue service contains the following components:

 ɴ URL format | Queues are addressable using the
following URL format:

http://<storage account>.queue.core.windows.net/<queue>

The following URL addresses one of the queues in
the diagram.

http://myaccount.queue.core.windows.net/imagesToDownload

 ɴ Storage Account | All access to Azure Storage is done
through a storage account

 ɴ Queue | A queue contains a set of messages. All

STORAGE
ACCOUNT

QUEUE

myaccount

imagesTo
Download

imagesTo
Resize

FIGURE 4

13© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper

messages must be in a queue
 ɴ Message | A message, in any format, of up to 64KB

FUNDAMENTAL DATA

ABSTRACTIONS – QUEUES

Provide reliable storage and delivery of messages for an
application.

 ɴ The decision on when to use Microsoft Azure Queues
or Service Bus Queues depends on a number of
factors, dependent heavily on the individual needs of
the application and its architecture. If an application
already uses the core capabilities of Microsoft Azure,
you may prefer to choose Microsoft Azure Queues,
especially if you require basic communication and
messaging between services or need queues that can
be larger than 5 GB in size

 ɴ When a message is read from the queue, the
consumer is expected to process the message and
then delete it. After the message is read, it is made
invisible to other consumers for a specified interval.
If the message has not yet been deleted at the time
the interval expires, its visibility is restored, so that
another consumer may process it

MICROSOFT AZURE QUEUES

 ɴ Provide reliable message delivery
 ɴ Simple, asynchronous work dispatch
 ɴ Programming semantics ensure that a message can

be processed at least once
 ɴ Queues are Highly Available, Durable and

Performance Efficient
 ɴ Provide reliable message delivery
 ɴ Allows Messages to be retrieved and processed at

least once
 ɴ No limit on number of messages stored in a Queue
 ɴ Message size is <=64KB
 ɴ Access is provided via REST

14© copyright Arrk Limited | 2015

Windows Azure Storage
White Paper ACCOUNT, QUEUES AND

MESSAGES

 ɴ An Account can create many Queues
 ɴ Queue Name is scoped by the Account
 ɴ A Queue contains Messages
 ɴ No limit on number of messages stored in a Queue.

But a Message is stored for at most a week.

http://<Account>.queue.core.windows.net/<QueueName>

 ɴ Message Size <= 64 KB. To store larger data, store
data in blob/entity storage, and the blob/entity name
in the message

QUEUE PROGRAMMING API

 ɴ Queues | Create/Clear/Delete Queues. Inspect
Queue Length

 ɴ Messages | Enqueue (QueueName, Message).
Dequeue (QueueName, Invisibility Time T). Delete
(QueueName, MessageID)

QUEUE SERVICE CONCEPTS

 ɴ Addressing Queue Service Resources | The Queue
service exposes the following resources via the REST
API :

Account | The storage account is a uniquely identified
entity within the storage system. The account is the
parent namespace for the Queue service. All queues
are associated with an account.

Queue | A queue stores messages that may be
retrieved by a client application or service.

Messages | Messages are UTF-8 encoded text that
can be the value of an XML element. A message can
be 64 KB in size.

 ɴ Naming Queues and Metadata

 ɴ Settings Timeouts for Queue Service Operations

© copyright Arrk Limited | 2015

About Arrk Group

Arrk Group is a software engineering company with core
competency in three areas:

 ɴ Building easy-to-use, robust digital applications and
platforms

 ɴ User centred design and high performing engineering
practices

 ɴ Through dedicated, distributed customer teams

Founded in 1998 we have designed and delivered award-
winning large scale bespoke digital engagement platforms
and membership management systems and have a strong
track record of delivering digital transformation in a variety
of industries.

Our approach brings together our experience in user
centred design with leading Agile based software engineering
practices, delivered by distributed teams to provide intuitive
but industrial strength solutions that focus on business
outcomes. As we provide digital applications and platforms,
our solutions have to be engaging and easy to use.

We prefer to automate much of the testing, continuous
integration and build and deployment pipelines. Our
development skillsets encompass a broad range of
technologies including the Microsoft technology stack, .NET,
Java and J2EE, Rails, Grails, Cloud based solutions and Mobile
Development.

Our SpArrk communities programme challenges our
consultants to stay at the leading edge of technologies
and processes and follow key trends in our industry to
generate thought leadership and internal R&D. The SpArrk
communities focus on 3 main areas:

 ɴ Digital Platform & Architecture

 ɴ High Performance Software Engineering

 ɴ Leading Edge Technology

Get In Touch

 +44 (0) 161 227 9900

 www.arrkgroup.com

 talktous@arrkgroup.com

 @arrkgroup

 UK:
 Greenheys, Pencroft Way,
 Manchester Science Park,
 Manchester, M15 6JJ
 India:
 Building 5, Sector 2,
 Millennium Business Park,
 Mahape, Navi Mumbai - 400 710

